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Abstract. Java bytecode verification is traditionally performed by a
polynomial time dataflow algorithm. We investigate an alternative based
on reducing bytecode verification to model checking. Despite an expo-
nential worst case time complexity, model checking type-correct bytecode
is polynomial in practice when carried out using an explicit state, on-
the-fly model checker like Spin. We investigate this theoretically and
experimentally and explain the practical advantages of this alternative.

1 Introduction

Java is a popular programming language that is well suited for building dis-
tributed applications where users can download code that they can locally exe-
cute. To combat the security risks associated with mobile code, Sun has devel-
oped a security model for Java and a central role is played by bytecode verifica-
tion [7, 18], which ensures that no malicious code is executed by a Java Virtual
Machine (JVM). Bytecode verification takes place when loading a Java class
file and the process verifies that the loaded bytecode program has certain prop-
erties that the interpreter’s security builds upon. By checking these properties
statically before execution, the JVM can safely omit the corresponding runtime
checks.

In this paper we show how model checking can be used to check type safety
properties (which is the essential, and non-trivial, part of bytecode verification)
of Java class files. We have built a system for this task, shown in Figure 1. The
system takes as input a Java class file as well as a specification of an abstraction
of the Java virtual machine. From these, the system produces an intermediate
representation consisting of a transition system (for the abstracted machine) and
a specification of safety properties formalizing conditions sufficient for bytecode
type safety. Afterwards, these descriptions are translated into the input language
of public domain model checkers, currently the Spin [4] and SMV [5] systems.

Motivation and Contributions

There are three reasons why we focused on this problem. First, we were inter-
ested in using formal methods to improve the security of the entire verification
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and execution process. In formalizing the Java Virtual Machine and its abstrac-
tion, we show how to explicitly model bytecode verification in a precise language
that makes explicit the exact nature of the bytecode verification problem. This
goes far beyond the Java documentation [7], which gives only a semi-formal
description of bytecode verification and leaves numerous aspects of both the
bytecode verifier and the Java Virtual Machine either ambiguous or underspeci-
fied. Moreover, by basing a bytecode verifier directly on a general model checker,
our approach reduces the chance of errors arising during an implementation of
specialized dataflow algorithms. It is noteworthy in this regard that, as Stärk
and Schmid point out [16], there are legal Java programs whose compiled byte-
code is type correct but are not accepted by Sun’s bytecode verifier. The classes
of programs that they define (based on calling subroutines in different contexts)
are unproblematic for our approach.

Second, we were interested in determining whether this approach is prac-
tical and scales to realistic examples. The answer is not obvious. In contrast
to conventional bytecode verification, which is based on dataflow analysis and
has polynomial time complexity, using a model checker for this task has a time
complexity that is exponential in the worst case. We show that for type correct
bytecode, model checking can yield results comparable to dataflow procedures.
The reason for this is that despite the exponential number of states, for cor-
rect code, only polynomially many are reachable (see Section 3 for the exact
analysis). Our experiments validate that the use of Spin, which constructs the
state space incrementally, on-the-fly, produces results in agreement with these
bounds. This is in contrast to symbolic BDD-based model checking approaches
like SMV that must represent the entire state space and therefore turn out to
be impractical for this kind of problem. For incorrect bytecode, both explicit
state and symbolic methods may fail to terminate (or exhaust memory). This is
not an issue in practice; when too many resources are used, one may either time
out (giving a conservative answer) or use an alternative approach (e.g., property
simplification, as described in Section 3.3) to detect an error.



Our result suggests the usefulness of bytecode verification by model check-
ing, especially in domains where time and space requirements are less important
than correctness and possible extensibility. One such application is Java for smart
cards (JavaCard). The JavaCard is a highly secure smart card platform with a
simplified JVM. Due to memory limitations, bytecode verification must be per-
formed off-card (where correct code can then be digitally signed by the verifier),
instead of by the run-time environment. Our original motivation for this work
was to investigate whether model checking could be used as an alternative in
this domain, a question we can now answer positively.

There is a final, independent reason why we think this is an interesting prob-
lem: there is an unlimited supply of scalable, real life examples. The Java dis-
tribution, for example, comes with thousands of class files that we could use
for testing our system. Indeed, for this reason, we would like to suggest byte-
code verification as a problem domain to be generally used to test and compare
different model checkers. Our system is freely available for such benchmarking
purposes.

Related Work

The widespread use of Java and the lack of formal treatment originally given in
[7] have motivated considerable research. A number of different approaches have
been proposed for type checking bytecode and [6] contains an excellent overview
of the area. Most of this work is theoretically oriented and is concerned with
formalizing the JVM [2] and defining related type systems [3, 12, 13, 17]. There
has also been considerable work on formally proving the soundness of various
approaches or verifying sufficient conditions for bytecode verifiers to be correct
[2, 8, 10, 11].

In the recent years there has been a convergence of ideas in static analysis
and model checking: different kinds of program analysis can be performed by
fixed-point computations and these computations can either be carried out by
specialized algorithms or by general purpose model checkers [14, 15]. Whereas
static analysis techniques have a longstanding history, the application of model
checking to static analysis problems is more recent. The idea of using model
checking for bytecode verification was originally suggested by Posegga and Vogt
[9]. They carried out a few small examples by hand to suggest how, in principle,
this approach could work for a subset of the JVM. Our work represents the
first large scale effort to apply model checking to this problem and to study its
practical significance.

Organization

The remainder of this paper is organized as follows. In Section 2 we explain the
reduction of bytecode verification to model checking. Afterwards, in Section 3 we
present experimental results and an analysis. We draw conclusions in Section 4.



class Test {

int fac (int i) {

if ( i == 0 )

return 1;

else

return i*fac(i-1);

}

}

Method int fac(int)

>> max_stack=4, max_locals=2 <<

0 iload_1

1 ifne 4

2 iconst_1

3 ireturn

4 iload_1

5 aload_0

6 iload_1

7 iconst_1

8 isub

9 invokevirtual <Test.fac(int):int>

10 imul

11 ireturn

Fig. 2. Java code and Bytecode of method fac

2 Abstracting Classfiles to Model Checking Problems

2.1 Background

In this section we briefly explain the bytecode verification problem and describe
the main elements of our approach.

Bytecode and the JVM. Java programs are compiled to bytecode instructions
that are interpreted by the JVM (see Figure 2 for a small example). The result
of compilation, a classfile, contains a symbol table (called the constant pool)
describing the fields of the class and a list of the methods of the class. The
JVM supports object orientation and there are specific bytecode instructions
for generating and accessing the objects of a class. The overall architecture is
that of a stack machine: the JVM possesses an operand stack, which is used for
the evaluation of expressions. For instance, an imul instruction multiplies the
topmost two elements of the operand stack, discards those elements from the
stack, and pushes the result of the multiplication back on the operand stack.
In addition to the stack, the JVM also uses an array of registers to store local
variables.

Most JVM instructions are typed. For instance, the getfield C.f.τ instruc-
tion, which accesses the field f of type τ in class C, requires that the operand
stack contains a reference to an object of class C (and not, for instance, an in-
teger, which would correspond to an attempt to forge a reference). The operand
stack and the registers (local variables) however are not typed.

Bytecode verification To guarantee the secure operation of the JVM, one must
show that each method is well-typed, i.e., that one can assign a state type to
each point in the program. The state type specifies what kind of values the
operand stack and the local variables may contain at the given program point.
For example, the state type (0,Empty, loc[0 �→ REF(Test), 1 �→ INT]) associates



to the program point 0 those states with an empty operand stack whose first
local variable contains an object of class Test and whose second local variable
contains an integer. Given this notion of a well-typing, one can show that the
execution of a well-typed method will never lead to a bad state of the JVM, that
is, a state where the instructions operate on inappropriate data. This allows the
JVM to execute more efficiently by eliminating runtime type checks.

Conventional bytecode verification. Conventional bytecode verification works by
abstracting a method to a state transition system and then computing a type of
the method by dataflow analysis. The bytecode verifier checks, on-the-fly, that
the computed type is a well-typing, i.e. satisfies the conditions for the correct
execution of the instructions.

Conventional bytecode verification is complicated by the existence of subrou-
tines, which are used to compile the finally part of a Java try-catch-finally
construct. The complication is due to the fact that one can call (jsr) and return
from (ret) subroutines from different program points where the calling con-
texts (the stack and the register values not used by the subroutine) of different
execution paths can be incompatible. This results in non-trivial complications;
solutions include structural restrictions on bytecode (Sun’s approach) and poly-
variant dataflow analysis [6]. It is an open question which solution is best. The
polyvariant approach seems more elegant but has a time complexity that is ex-
ponential in the depth of subroutine nesting.

Model checking approach. In our approach we also abstract a method to a state
transition system. However, instead of performing a dataflow analysis, we formal-
ize the correctness properties as predicates of the states of the abstract transition
system and use an off-the-shelf model checker like Spin or SMV to check that
these properties are satisfied. The model checker then either reports the correct-
ness of the method, or it provides a counter example in form of an execution trace
that leads to a failure. The problems alluded to above concerning subroutines do
not arise in our approach since model checkers consider all possible runs of the
system; they are, in the words of [6, p281], “the ultimate polyvariant analysis”.
However, the cost is a time complexity exponential in the depth of subroutine
nesting. We investigate this problem and its implications in Section 3.2.

2.2 Abstraction/Transition System

We abstract a method M to a finite state transition system (Q, q0,∆). The
set Q ⊆ N × (T stack) × (T array) of states contains triples that consist of
the program counter, the operand stack, and the array of local variables of the
method M . The set T of types contains the primitive types and the reference
types of the JVM (NULL represents the polymorphic type of the null reference)
and the program addresses that can be targets of ret instructions. We add an



element UNDEF to represent uninitialized values.

prim = {INT,FLOAT, LDOUBLE,HDOUBLE, LLONG,HLONG}
ref = {REF(cn) | cn ∈ classnames} ∪ {NULL}
adr = {ADR(i) | i ∈ N}
T = {UNDEF} ∪ prim ∪ ref ∪ adr

Since only a finite subset of T occurs in a particular transition system, we
can compute this subset by inspecting the signature and the method body. The
signature of a method, which has the form

S = (M, result type, [arg type1 , . . . , arg typen ])

specifies the method’s name, its argument types and its result type. The method
body is given as a list ins of bytecode instructions. The various instructions in
the method body also introduce new types, e.g.,

types of ins(imul) = {INT}
types of ins(new C) = {C}
types of ins(getfield C.f.τ) = {C, τ}

... .

Thus the set T of types occurring in a method that belongs to class C is

T ={REF(C), result type, arg type1 , . . . , arg typen} ∪⋃
p∈{0,...,|ins|−1}

types of ins(insp).

We compute the initial state q0 of the transition system for a method M with
signature S that belongs to a class C as follows: Execution starts at program
counter 0 with an empty operand stack, the this reference, and the actual pa-
rameters, which are passed through the first n+1 local variables. The remaining
local variables loc[n+ 1], . . . , loc[maxloc] are initially undefined (maxloc is spec-
ified in the classfile), i.e.,

q0 = (0,Empty, loc), where




loc[0] = REF(C)

loc[1] = arg type1 , . . . , loc[n] = arg typen
loc[n + 1] = UNDEF, . . . , loc[maxloc] = UNDEF.

The transition relation of the abstract method is defined by the instructions
of the method. We give here a few representative examples, which show how
the program counter pc, the operand stack opst , and the local variables loc are
modified:
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istore n (pc, opst , loc) �→ {(pc + 1, opst , loc[n �→ top(opst)])}
iload n (pc, opst , loc) �→ {(pc + 1, loc[n].opst , loc)}
imul (pc, opst , loc) �→ {(pc + 1, INT.pop(pop(opst)), loc)}
new C (pc, opst , loc) �→ {(pc + 1,REF(C).opst , loc)}
getfield C.f.τ (pc, opst , loc) �→ {(pc + 1, τ.pop(opst), loc)}
ifeq offset (pc, opst , loc) �→ { (pc + 1, pop(opst), loc),

(pc + offset , pop(opst), loc)}
jsr offset (pc, opst , loc) �→ {(pc + offset ,ADR(pc + 1).opst , loc)}
ret n (pc, opst , loc) �→ {(retaddr(loc[n]), opst , loc)}

2.3 Type Safety Properties

We formalize correctness properties as predicates on the states of the abstract
transition system. These properties must hold globally for all possible runs of
the system and this motivates our use of a temporal specification formalism.
Two different kinds of properties are required.

First, the operand stack must not overflow. The operand stack is only used
to evaluate expressions and hence the maximal stack-height maxstack can be
computed in advance. This value is given as a method attribute in the classfile
of the method. We can formulate the corresponding condition as size(opst) ≤
maxstack .

Second, each instruction must always operate on data of the appropriate type.
Note that due to object orientation, for some instructions different types of data
are acceptable as determined by the subtyping relation �Γ , which depends on
the program Γ . Figure 3 shows the subtyping relation �Γ for a program Γ
consisting of three classes C, D, and E. In the specification of the JVM, the
well-typing conditions can be formalized in a straightforward, declarative way.



We give here a few representative examples:

aload n �→ loc[n] ∈ ref ∩ T
iload n �→ loc[n] = INT
imul �→ (top(opst) = INT) ∧ (top(pop(opst)) = INT)
getfield C.f.τ �→ top(opst) �Γ REF(C )
putfield C.f.τ �→ top(pop(opst)) �Γ REF(C ) ∧ top(opst) �Γ τ

For a given program Γ , the relation �Γ is finite and thus the conditions can
be unfolded and automatically checked. The condition for the getfield C.f.τ
instruction, for instance, would be unfolded to

local cond(getfield C.f.τ) ≡ top(opst) = REF(C ) ∨ top(opst) = REF(D) ∨
top(opst) = REF(E ) ∨ top(opst) = UNIT.

The overall correctness property for a method is the conjunction of the global
property for the stack height and the local property for each program point.

(size(opst) ≤ maxstack) ∧
∧

p∈{0,...,|ins|−1}
(pc = p ⇒ local cond(insp))

2.4 Backends for Spin and SMV

We have implemented two different backends: one for Spin and one for SMV.
The basic idea in both is the same. From our intermediate representation we
produce a transition system in the input language of the model checker and a
property specification. The property specification states globally invariant cor-
rectness properties, i.e., properties that must hold at every program point. In
LTL this corresponds to checking �ϕ for a state property ϕ and in CTL this
corresponds to checking AG(ϕ).

We briefly describe here the Spin backend (SMV is similar in most respects).
The formalization of the transition system in Spin’s input language Promela
is straightforward. The types of the transition system, i.e. the elements of the
set T , are represented as integers. The stack and the array of local variables
are modeled as arrays of integers. As an example, Figure 4 shows the abstract
transition system for the fac bytecode presented in Section 1. The data required
to model this method are the address labels {ADR(0), . . . ,ADR(11)} and the
types {UNDEF, INT,UNIT,REF(Test)}. They are represented (in this order) by
the numbers 0 through 15. Initially the operand stack is empty, the local variable
loc[0] contains the this reference REF(Test) and the local variable loc[1] contains
the INT argument of the method. Each transition modeling an instruction is
carried out as an atomic step. A branching instruction, which produces two
possible successor states, is modeled using a nondeterministic if-statement.

Note that in Spin the invariant ϕ can be expressed in different ways, e.g.,
as an observer process or using a never-claim. We have chosen the former:
The observer process runs in parallel to the abstract state transition system
and it contains an assertion statement that states the correctness property



init { atomic { loc[0]=15; loc[1]=13; opst_ptr=0; pc=0 };

run assertions (); run transitions () }

proctype transitions( ) {

do

:: pc==0 -> atomic { opst[opst_ptr]=loc[1]; opst_ptr=opst_ptr+1; pc=1 };

:: pc==1 -> if

:: atomic { opst_ptr=opst_ptr-1; pc=2 };

:: atomic { opst_ptr=opst_ptr-1; pc=4 }

fi;

:: pc==2 -> atomic { opst[opst_ptr]=13; opst_ptr=opst_ptr+1; pc=3 };

:: pc==3 -> atomic { break };

:: pc==4 -> atomic { opst[opst_ptr]=loc[1]; opst_ptr=opst_ptr+1; pc=5 };

:: pc==5 -> atomic { opst[opst_ptr]=loc[0]; opst_ptr=opst_ptr+1; pc=6 };

:: pc==6 -> atomic { opst[opst_ptr]=loc[1]; opst_ptr=opst_ptr+1; pc=7 };

:: pc==7 -> atomic { opst[opst_ptr]=13; opst_ptr=opst_ptr+1; pc=8 };

:: pc==8 -> atomic { opst[opst_ptr-2]=13; opst_ptr=opst_ptr-1; pc=9 };

:: pc==9 -> atomic { opst[opst_ptr-2]=13; opst_ptr=opst_ptr-1; pc=10 };

:: pc==10 -> atomic { opst[opst_ptr-2]=13; opst_ptr=opst_ptr-1; pc=11 };

:: pc==11 -> atomic { break }

od

}

Fig. 4. Abstract transition system for the fac bytecode in Spin

that must hold at each state. This approach is simple and has the practical
advantage that temporal formulas need not be translated separately to au-
tomata. Figure 5 shows the correctness properties for our sample bytecode.
For example, for the invokevirtual<Test.fac(int):int> instruction at pc =
9, we require that the topmost element of the operand stack is an INT (i.e.
opst[opst_ptr-1]==13) and the next element is a reference to an instance of
the class Test (i.e. opst[opst_ptr-2]==15).

We will not provide here a formal proof of the correctness of the translation.
However, the basis is given in the work of [11] where they specify sufficient con-
ditions for Java bytecode verifiers to be correct. The main idea is that a method
is well-typed when it can be assigned a type (composed of state types, described
in Section 2.1) and the existence of such a well-typing guarantees that method
execution proceeds without type errors (stack overflow or improper arguments
to instructions). It is possible to show that when a method is successfully model
checked in our setting then such a well-typing exists.

3 Experimental Results and Analysis

We have carried out two different kinds of experiments to investigate the applica-
bility and scalability of using model checking for bytecode verification. First, to



proctype assertions() {

assert (opst_ptr<=4 &&

(pc!=0 || loc[1]==13) &&

(pc!=1 || opst[opst_ptr-1]==13) &&

(pc!=3 || opst[opst_ptr-1]==13) &&

(pc!=4 || loc[1]==13) &&

(pc!=5 || loc[0]==14 || loc[0]==15) &&

(pc!=6 || loc[1]==13) &&

(pc!=8 || opst[opst_ptr-2]==13 && opst[opst_ptr-1]==13) &&

(pc!=9 || opst[opst_ptr-1]==13 && opst[opst_ptr-2]==15) &&

(pc!=10 || opst[opst_ptr-2]==13 && opst[opst_ptr-1]==13) &&

(pc!=11 || opst[opst_ptr-1]==13) )

}

Fig. 5. Correctness properties for fac

test the practical applicability of this approach, we model checked all the meth-
ods associated with a large Java library, namely all methods of the java.lang
package. Second, to better understand how the complexity of bytecode checking
depends on parameters such as method length, nesting of subroutines, or num-
ber of variables and the types involved, we carried out systematic “stress tests”
where we varied each parameter individually, while leaving the others fixed.

3.1 Practical applicability

To test the applicability of our approach to the verification of real bytecode, we
tested it on all the methods of the java.lang package. This package contains 109
classes with 841 methods. These methods are representative for Java bytecode as
they contain all the instructions of the JVM. Moreover, they vary considerably
in their complexity in terms of the different parameters mentioned above. Also
representative is their size. Most Java methods in practice are modestly sized.
In this package, only 32 methods contain more than 100 instructions.

As Figure 6 indicates, Spin checks almost all of these methods in negligible
time.1 Only the largest five, which each contain more than 600 instructions,
require more than half a second. This is sufficient for the most applications and
in particular is more than adequate for off-line verification (e.g., smart cards) and
for applications with on-line verification, such as web applets, where methods are
generally quite small. The picture for SMV is completely different; even small
methods with less than 100 instructions can require more than two minutes to
verify and, for 29 methods, SMV ran out of memory. This suggests that, for
this problem domain, explicit state on-the-fly methods are superior to symbolic
methods. Our systematic tests shed light on some of the reasons for this.

1 In all experiments, times are measured in seconds. All timings are performed on an
800-Megahertz Pentium III PC with 256 MB memory.
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Fig. 6. Verification times depending on the number of instructions in a method

3.2 Systematic tests

We carried out four different “stress tests” to isolate and investigate the influence
of various parameters on the complexity of the model checking problem. In
particular, we investigated the effects of individually varying the following:

1. The length of the method, i.e. the number of instructions,
2. the number of local variables,
3. the depth of the class hierarchy, i.e. the number of types that are used to

model a method, and
4. the depth of the nesting of subroutines.

The methods checked were automatically produced by generating and compiling
appropriate Java programs as explained below.

Method length. We investigated the influence of a method’s length by generating
methods that consist of a single expression repeated n times, for n ∈ {1, . . . , 100}.
Figure 7 shows the form of these methods. The corresponding bytecode uses only
one local variable x and one class variable z. The method is declared in a static
class that is a direct subclass of Object; thus the class hierarchy has depth
one. The repeated line of code, z = z + x, is translated to a sequence of four
bytecode instructions.

As Figure 8 shows, Spin runtimes scale roughly quadratically with the size
of the method and the associated constant factors are small enough to allow
practical large scale verification. In contrast, SMV has acceptable verification
times until a threshold of around 200 instructions, and then scales quite poorly.
It may be possible to delay this threshold by tuning different system specific
parameters (e.g., the size of hash tables). However, the symbolic representation



static int z;

public static int m n (int x) {

n times




z = z + x;
...

z = z + x;

return z; }

Fig. 7. Schema of methods to test dependency of complexity on code length
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Fig. 8. Verification time depending on the number of instructions

of the entire state space in SMV leads to unavoidable memory problems and
results in runtimes orders of magnitude larger than Spin’s. Perhaps surprisingly,
these problems appear in even such a simple test.

Number of variables. In this test, we varied the number of local variables, which
also constitute the arguments of the method. To insure that all variables are
used, the method body simply cyclically permutes the contents of the variables.
This is done in such a way that the number of assignments, and thus the number
of instructions, is the same in each method.

Figure 10 displays the results. For Spin, the number of variables has little ef-
fect on the explicit state-space exploration: the time consumed grows very slowly
as a function of the number of variables.2 The slight variations are caused by the
time required to initialize the transition system (that is, Spin’s init routine,

2 Due to limited timing accuracy, this slow growth manifests itself in Figure 10 in
a subtle way. Namely, almost all times lie between 0.06 and 0.08 seconds, but the
concentration at 0.07 and 0.08 is higher as more variables are added.



void m_1(int v0)

{ v0 = v0;

v0 = v0;

v0 = v0; }

void m_2(int v0, int v1)

{ v0 = v1;

v1 = v0;

v0 = v1; }

void m_3(int v0, int v1, int v2)

{ v0 = v1;

v1 = v2;

v2 = v0; }

Fig. 9. Schema of methods to test dependency of complexity on the number of local
variables
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Fig. 10. Verification time versus number of local variables

which assigns to each variable its initial value), which is linear in the number of
variables. Apart from this, the time required is constant as only a constant set
of states (one for each program point, cf. Section 3.3) is reachable. In contrast,
SMV’s time complexity grows rapidly in the number of variables and quickly be-
comes impractical with more than 20 variables. This is not too surprising since
SMV must represent and manipulate the complete transition system. Symbolic
representation using BDDs provides some help here: As suggested by Figure 11
(logarithmic scale for the y-axis), the growth is subexponential since BDDs can
compress the representation somewhat. Still, this is, in general, the major bot-
tleneck with symbolic model checking, and it is a substantial problem in this
particular domain.

Class hierarchy depth. For this test we generated a linear hierarchy of 100 classes,
C1, . . . , C100, such that Ci+1 is a direct subclass of Ci. An additional class con-
tains 100 methods, m1, . . .m100, to be checked. Each of these method takes 100
arguments. The arguments all have the same type in the first method. The sec-
ond method has arguments of two different types and, in the general case, the
ith method’s arguments are of i different types. For each method, the method
body consists of a single assignment statement. Since these assignments are all
identical, the abstract transition system is the same for every method. However,
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public void m_1 (C_1 c_1, C_1 c_2, ..., C_1 c_100) {c_1.field = 0;}

public void m_2 (C_1 c_1, C_2 c_2, ..., C_1 c_100) {c_1.field = 0;}
...

public void m_100 (C_1 c_1, C_2 c_2, ..., C_100 c_100) {c_1.field = 0;}

Fig. 12. Schema of methods for testing dependency of complexity of depth of class
hierarchy

the state space grows as more types are present; moreover, the properties to be
checked also become more complex. In the case of Spin, the depth of the class
hierarchy has no effect on the verification time as the set of reachable states
does not change as more types are added (the variation of 0.01 seconds is due
to inaccurate timing).

In the case of SMV, the verification time grows linearly with the number of
different types. Examining the graph, we can identify four different groups of
methods, where the ith group contains methods using 2i to 2i+1 − 1 different
class types. The reason for this grouping is that for the ith group SMV requires
i+2 bits to represent these types and it appears that a small additional amount
of time (corresponding to the small gap between the groups) is required to ma-
nipulate the larger BDDs. Note that the 100 local variables used do not blow
up the state space as only c1 is actually used; that is, in this example the BDDs
achieve an exponential compression of the state space.

Depth of subroutine nesting. Our last test considered methods that contain
nested subroutines where the depth of the nesting is increased in each method.
As explained in Section 2.2, verifying subroutines is one of the more delicate
issues in bytecode verification. The fact that verifying subroutines by model
checking is much simpler than verifying them conventionally comes at the price
of exponential time consumption! Both Spin and SMV do not cope well with
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Fig. 13. Verification time versus depth of class hierarchy

public void m_1() {

int x = 0;

x++; // repeated 52 times

try {throw new Exception();}

catch (Exception e) {}

finally {} }

public void m_2() {

int x = 0;

x++; // repeated 39 times

try {throw new Exception();}

catch (Exception e) {}

finally{

try{throw new Exception();}

catch (Exception e) {}

finally{} } }

Fig. 14. Sample method for testing complexity of subroutine nesting

checking nested subroutines, as Figure 15 illustrates. Since subroutines are poly-
morphic in the local variables that are not used in the subroutine, the reachable
state space in this case is exponential in the depth of subroutine nesting. BDDs
do not have any significant impact on this explosion.

3.3 Analysis

In the following we compare the complexity of conventional bytecode verification
with model checking. Let ins be the number of program points, T the number
of types, maxloc the number of local variables, and maxstack the maximal stack
height. For conventional bytecode verification, the size of the state space is

ins · (2T )
maxloc+maxstack

,

as each program point is (due to multiple inheritance) associated with a set of
types for the local variables and stack positions. Despite the size of this search
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space, in conventional bytecode verification, only linearly many states ever need
to be explored. In particular, the method type that associates a state type with
every program point is computed by iterating an abstract interpretation of the
method. The algorithm starts with a method type that associates the bottom
type to each program point. In each iteration, the state types belonging to dif-
ferent execution paths are merged by taking their supremum. This yields a new
state type for each program point that is larger or equal (under the subtyping
order) than that of the previous iteration. This process terminates when a fixed
point is reached or an error is found. Structural restrictions placed on bytecode
(e.g. no two subroutines can be terminated by the same return instruction) guar-
antee that the number of iterations required is linear in the number of program
points. Since no iteration can decrease the types associated with any program
position, a fixed point must be reached in O(ins · T · (maxloc +maxstack)) iter-
ations.

In the case of model checking, the state space is also exponential. However,
as program points are associated with types, instead of sets of types, the size is

ins · Tmaxloc+maxstack .

The complexity of model checking itself depends on the algorithm used. Symbolic
methods manipulate a representation of the entire state space and, as we have
seen, can require exponential resources to do so. However, assuming that the
nesting of subroutines has some fixed upper bound (in practice the nesting is
almost never greater than two), in correct methods only O(ins) of these states
are reachable since there is only one state type possible for each program point.

This tractability result only holds for type-correct bytecode. For incorrect
bytecode there can indeed be exponentially many reachable states since any
type can be associated with any local variable or stack position at each program



point. Preliminary experiments with incorrect bytecode confirm that checking it
is considerably more resource intensive than checking correct bytecode. For even
small methods consisting of less than 100 instructions, both Spin and SMV are
incapable of finding errors; typically Spin fails to terminate and SMV runs out
of memory. This is not a problem in practice; when too many resources are used,
one may either time out (giving a conservative answer) or use an alternative
approach to detect an error.

For detecting errors in incorrect code we have found the following “property
simplification” approach useful. Instead of checking the correctness properties
for all instructions simultaneously (e.g., the large conjunct in Figure 5), the
properties checked are split (divide-and-conquer) into subproperties, which are
individually checked in separate model checking runs. In the extreme case, we
can individually check the safety of each transition from each possible program
point (e.g., perform a model checking run for each conjunct in Figure 5). This
trades off space for time, reducing the size of the overall transition system for
each run, which is the product of the transition system modeling the method
and the transition system representing the properties. This approach has proved
adequate for finding type flaws in our tests. Bounded model checking [1] is an
interesting possible alternative, as normally the paths to errors are fairly small.

4 Conclusion

Our investigation is the first, realistic, large scale study of bytecode verification
by model checking. Moreover, to the best of our knowledge, it is one of the
larger case studies in using model checking for static analysis. Our conclusion
is that, despite being theoretically intractable in the worst case, model checking
is in fact practically viable. The key insight is that for practical applications,
validating correct code is important; this is feasible since only linearly many
states are accessible (provided subroutine nesting is limited, as it is in practice).
Our tests confirm that explicit state, on-the-fly model checkers like Spin can be
successfully employed for these kinds of problems; this is in contrast to symbolic
model checkers like SMV that must manipulate representations of the entire
state space.

The system we have implemented can model check full JVM bytecode, i.e.,
it models all 200 instructions of the JVM. Currently, the only feature missing
is code to model object initialization. This has been implemented, but it is not
yet completely tested and remains as future work. This issue is rather subtle as
explained in [3, 6]. In addition, as future work we would also like to investigate
the question of how such a general framework can be used to go beyond model
checking type safety properties and validate other kinds of security properties of
bytecode.
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